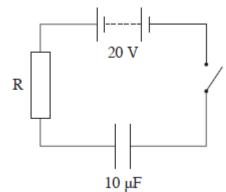
Q1.An uncharged 4.7 nF capacitor is connected to a 1.5 V supply and becomes fully charged.

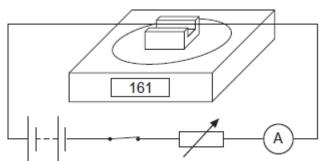
How many electrons are transferred to the negative plate of the capacitor during this charging process?


- **A** 2.2×10^{10}
- **B** 3.3×10^{10}
- **C** 4.4×10^{10}
- **D** 8.8×10^{10}

(Total 1 mark)

Q2.When fully charged the 2.0 mF capacitor used as a backup for a memory unit has a potential difference of 5.0 V across it. The capacitor is required to supply a constant current of 1.0 μ A and can be used until the potential difference across it falls by 10%. For how long can the capacitor be used before it must be recharged?

- **A** 10 s
- **B** 100 s
- **C** 200 s
- **D** 1000 s


Q3.A capacitor of capacitance 10 μ F is charged through a resistor R to a potential difference (pd) of 20 V using the circuit shown.

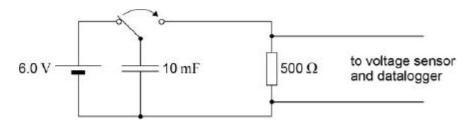
When the capacitor is fully charged which one of the following statements is incorrect?

- A The energy stored by the capacitor is 2 mJ.
- **B** The total energy taken from the battery during the charging process is 2 mJ.
- **C** The pd across the capacitor is 20 V.
- **D** The pd across the resistor is 0 V.

Q4.The diagram shows a rigidly-clamped straight horizontal current-carrying wire held mid-way between the poles of a magnet on a top-pan balance. The wire is perpendicular to the magnetic field direction.

The balance, which was zeroed before the switch was closed, read 161 g after the switch was closed. When the current is reversed and doubled, what would be the new reading on the balance?

- **A** -322 g
- **B** −161 g
- **C** zero
- **D** 322 g


(Total 1 mark)

(Total 1 mark)

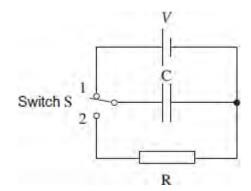
Q5. Which of the following statements about a parallel plate capacitor is incorrect?

- A The capacitance of the capacitor is the amount of charge stored by the capacitor when the pd across the plates is 1 V.
 - 0
- **B** A uniform electric field exists between the plates of the capacitor.
- 0
- **C** The charge stored on the capacitor is inversely proportional to the pd across the plates.
- 0
- **D** The energy stored when the capacitor is fully charged is proportional to the square of the pd across the plates.

Q6.A voltage sensor and a datalogger are used to record the discharge of a 10 mF capacitor in series with a 500 Ω resistor from an initial pd of 6.0 V. The datalogger is capable of recording 1000 readings in 10 s.

After a time equal to the time constant of the discharge circuit, which one of the rows gives the pd and the number of readings made?

	Potential difference / V	Number of readings	
Α	2.2	50	0
В	3.8	50	0
С	3.8	500	0
D	2.2	500	0

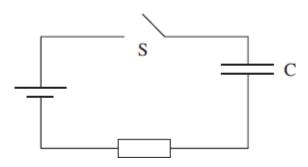

(Total 1 mark)

Q7.Initially a charged capacitor stores 1600 μ J of energy. When the pd across it decreases by 2.0 V, the energy stored by it becomes 400 μ J.

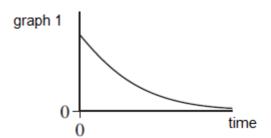
What is the capacitance of this capacitor?

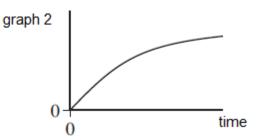
- A $100 \mu F$
- $B = 200 \mu F$
- C $400 \mu F$
- D 600 μ F

Q8. Switch S in the circuit is held in position 1, so that the capacitor C becomes fully charged to a pd V and stores energy E.


The switch is then moved quickly to position 2, allowing C to discharge through the fixed resistor R. It takes 36 ms for the pd across C to fall to $\frac{V}{2}$. What period of time must elapse, after the switch has moved to position 2, before the energy stored by C has fallen to $\frac{E}{16}$?

- **A** 51 ms
- **B** 72 ms
- **C** 432 ms
- **D** 576 ms


(Total 1 mark)


- **Q9.**A nuclear fusion device is required to deliver at least 1 MJ of energy using capacitors. If the largest workable potential difference is 10 kV, what is the minimum capacitance of the capacitors that should be used?
 - **A** 0.01 F
 - **B** 0.02 F
 - **C** 2 F
 - **D** 100 F

Q10.In the circuit shown the capacitor C charges when switch S is closed.

Which line, **A** to **D**, in the table gives a correct pair of graphs showing how the charge on the capacitor and the current in the circuit change with time after S is closed?

	charge	current
Α	graph 1	graph 1
В	graph 1	graph 2
С	graph 2	graph 2
D	graph 2	graph 1

Q11. The voltage across a capacitor falls from 10 V to 5 V in 48 ms as it discharge

through a resistor. What is the time constant of the circuit?

- A 24 ms
- B 33 ms
- C 69 ms
- D 96 ms

(Total 1 mark)

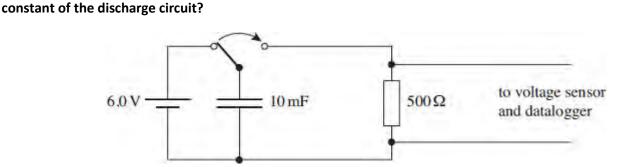
Q12.An initially uncharged capacitor of capacitance 20 μ F is charged by a constant current of 80 μ A. Which line, A to D, in the table gives the potential difference across, and the energy stored in, the capacitor after 50 s?

	potential difference / V	energy stored / J
Α	4.0 × 10 ⁻³	2.0 × 10 ⁻³
В	4.0 × 10 ⁻³	4.0 × 10 ⁻¹
С	2. 0 × 10 ²	2.0 × 10 ⁻³
D	2. 0 × 10 ²	4.0 × 10 ⁻¹

Q13. Which one of the following statements about a parallel plate capacitor is incorrect?

- A The capacitance of the capacitor is the amount of charge stored by the capacitor when the pd across the plates is 1V.
- B A uniform electric field exists between the plates of the capacitor.
- C The charge stored on the capacitor is inversely proportional to the pd across the plates.
- D The energy stored when the capacitor is fully charged is proportional to the square of the pd across the plates.

(Total 1 mark)


Q14. A 1000 μF capacitor and a 10 μF capacitor are charged so that they store the same energy. The pd across the 1000 μF capacitor is V_1 and the pd across the other capacitor is V_2 .

What is the value of the ratio $\left(\frac{V_1}{V_2}\right)^2$

$$\frac{1}{1000}$$

$$c \frac{1}{10}$$

Q15. A voltage sensor and a datalogger are used to record the discharge of a 10 mF capacitor in series with a 500 Ω resistor from an initial pd of 6.0 V. The datalogger is capable of recording 1000 readings in 10 s. Which line, A to D, in the table gives the pd and the number of readings made after a time equal to the time

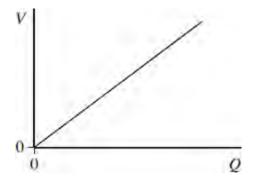
	potential difference/V	number of readings
Α	2.2	50
В	3.8	50
С	3.8	500
D	2.2	500

(Total 1 mark)

Q16. When a 220 μ F capacitor is discharged through a resistor R, the capacitor pd decreases from 6.0 V to 1.5 V in 92 s.

What is the resistance of R?

- Α 210 kΩ
- B 300 $k\Omega$
- C 420 $k\Omega$
- D 440 $k\Omega$


Q17. A capacitor stores a charge of $600~\mu\text{C}$ when charged to a potential difference (pd) of 6.0~V. What will be the pd across the plates if the charge stored increases by

50%?

- A 3.0 V
- B 4.5 V
- C 9.0 V
- D 12.0 V

(Total 1 mark)

Q18. The graph shows the results of an experiment which was carried out to investigate the relationship between the charge *Q* stored by a capacitor and the pd *V* across it.

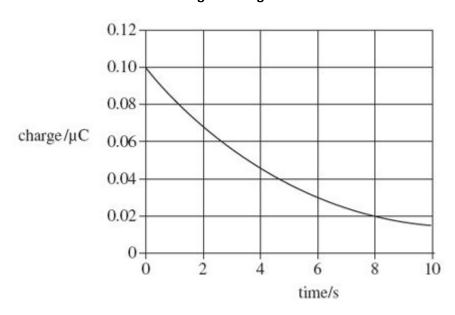
Which one of the following statements is not correct?

- A The energy stored can be calculated by finding the area under the line.
- B If a capacitor of smaller capacitance had been used the gradient of the graph would be steeper.
- C If Q were doubled, the energy stored would be quadrupled.
- D The gradient of the graph is equal to the capacitance of the capacitor.

Q19.	A 10 μF capacitor is fully charged to a pd of 3.0 kV. The energy stored in the capacito used to lift a load of 5.0 kg through a vertical h	
	What is the approximate value of h?	
Α	0.03 mm	
В	0.9 mm	
С	0.3 m	
D	0.9 m	(Total 1 mark)
Q20. from 0 V	A 400 μF capacitor is charged so that the voltage across its plates rises at a constant r to 4.0 V in 20 s. What current is being used to charge the capacitor?	rate
А	5 μΑ	
В	20 μΑ	
С	40 μΑ	
D	80 μΑ	
		(Total 1 mark)

Q21. A capacitor of capacitance *C* stores an amount of energy *E* when the pd across it is *V*. Which line, A to D, in the table gives the correct stored energy and pd when the charge is increased by 50%?

	energy	pd
Α	1.5 <i>E</i>	1.5 <i>V</i>
В	1.5 <i>E</i>	2.25 V
С	2.25 <i>E</i>	1.5 <i>V</i>
D	2.25 E	2.25 V

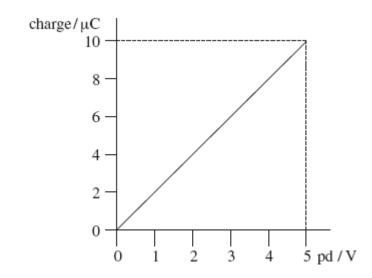

(Total 1 mark)

Q22. A capacitor of capacitance *C* discharges through a resistor of resistance *R*.

Which one of the following statements is not true?

- A The time constant will decrease if *C* is increased.
- B The time constant will increase if *R* is increased.
- C After charging to the same voltage, the initial discharge current will increase if *R* is decreased.
 - D After charging to the same voltage, the initial discharge current will be unaffected if *C* is increased.

Q23. The graph shows how the charge on a capacitor varies with time as it is discharged through a resistor.



What is the time constant for the circuit?

- A 3.0 s
- B 4.0 s
- C 5.0 s

D 8.0 s

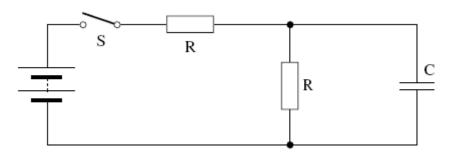
Q24. The graph shows how the charge stored by a capacitor varies with the pd applied across it.

Which line, A to D, in the table gives the capacitance and the energy stored when the potential difference is 5.0 V?

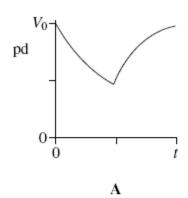
	capacitance/μF	energy stored/µJ
Α	2.0	25
В	2.0	50
С	10.0	25
D	10.0	50

hei	the end	motor. During the process, the motor lifts a weight of mass 0.10 kg. If 10% of ergy stored in the capacitor is used to lift the weight, through what approximate eight be lifted?
4	0.05 m	
В	0.10 m	
С	0.50 m	
D	1.00 m	(Total 1 mark)
	Q26.	A 1 μF capacitor is charged using a constant current of 10 μA for 20 s. What is
	the energy fi	nally stored by the capacitor?
4	2 × 10 ⁻³ J	
В	2 × 10 ⁻² J	
0	4 × 10 ⁻² J	
D	4 × 10 ⁻¹ J	(Total 1 mark)
		(Total I mark)

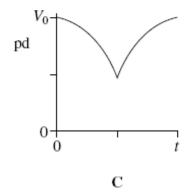
Q27.	A 2.0 mF capacitor, used as the backup for a memory unit, has a potential difference of
	5.0 V across it when fully charged. The capacitor is required to supply a constant current of
:	1.0 µA and can be used until the potential difference across it falls by 10%. How long can the
	capacitor be used for before it must be recharged?

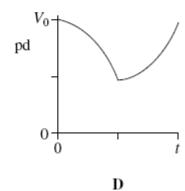

Α	10	S

B 100 s

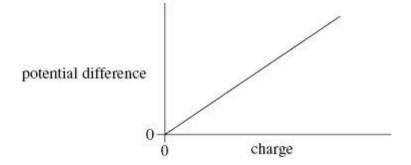

C 200 s


D 1000 s


Q28. When switch S in the circuit is closed, the capacitor C is charged by the battery to a pd V_0 . The switch is then opened until the capacitor pd decreases to 0.5 V_0 , at which time S is closed again. The capacitor then charges back to V_0 .



Which graph best shows how the pd across the capacitor varies with time, t, after S is opened?



- Q29. When a capacitor discharges through a resistor it loses 50% of its charge in 10 s. What is the time constant of the capacitor-resistor circuit?
- A 0.5 s
- B 5 s
- C 14 s
- D 17 s

(Total 1 mark)

Q30. The graph shows how the potential difference across a capacitor varies with the charge stored by it.

Which one of the following statements is correct?

- A The gradient of the line equals the capacitance of the capacitor.
- B The gradient of the line equals the energy stored by the capacitor.
- C The reciprocal of the gradient equals the energy stored by the capacitor.
- D The reciprocal of the gradient equals the capacitance of the capacitor.

- Q31. An initially uncharged capacitor of capacitance 10 μF is charged by a constant current of 200 μA . After what time will the potential difference across the capacitor be 2000 V?
 - A 50 s
 - B 100 s
 - C 200 s
 - D 400 s

(Total 1 mark)

Q32. A 1000 μ F capacitor, X, and a 100 μ F capacitor, Y, are charged to the same potential difference. Which row, A to D, in the table gives correct ratios of charge stored and energy stored by the capacitors?

	charge stored by X charge stored by Y	energy stored by X energy stored by Y
Α	1	1
В	1	10
С	10	1
D	10	10